Rogue waves in the Sasa-Satsuma Equation

U. Bandelow and N. Akhmediev

WIAS Berlin , Germany

We investigate solutions of the Sasa-Satsuma equation (SSE), which is an integrable extension of the nonlinear Schrodinger equation (NLSE). In particular we demonstrate the lowest order rogue wave solutions for several parameters. In contrast to the Peregrine solution of the NLSE, these rogue wave solutions are significantly more involved and contain polynomials of fourth order rather than of second order in the corresponding expressions. When the extension parameter of the SSE is reduced to zero we obtain the correct limiting case of Peregrine solution of the NLSE.